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1 Programmierung

Ein erstes Programm

C/C++
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1.1 Arbeitsweise eines Computers

Befehlssatz
• einfache Befehle

• RISC

• CISC

Von-Neumann-Zyklus
1. FETCH

2. DECODE

3. FETCH OPERANDS

4. EXECUTE

C/C++
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1.2 Motivation

Problem

• Programm in Maschinencode

• Codierung

• unterschiedliche Befehlssätze

Lösungsansätze

• Assemblersprachen

• höhere Programmiersprachen

• Interpreter

• Compiler

C/C++
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1.3 Interpreter

Beispiele
• bash

C/C++
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1.4 Compiler

Beispiele
• GNU Compiler Collection

• C / C++
• Fortran

C/C++
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1.5 Hybridcompiler

Beispiele
• Perl

• Java

• Python

C/C++
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2 Compiler / Linker

    Bearbeitungsschritte

• Quellcode

Präprozessor

• modifizierter Quellcode

Compiler

• Assemblercode

Assembler

• verschiebbarer Maschinencode

Linker

• Prozessabbild

• Shared Object

C/C++
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2.1 von der Quelle zur Objektdatei

Beispiel

C/C++
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#include <stdio.h>

int main (int argc, char* argv[])
{
  printf ("hello world.\n");
  return 0;
}

main.c

...

extern int printf (__const char *__restrict __format, ...);
...

int main (int argc, char* argv[])
{
  printf ("hello world.\n");
  return 0;
}

gcc -E main.c

.file "main.c" 

.section .rodata 
.LC0: 

.string "hello world.\n" 

.text 
.globl main 

.type main, @function 
main: 

pushl %ebp 
movl %esp, %ebp 
andl $-16, %esp 
subl $16, %esp 
movl $.LC0, %eax 
movl %eax, (%esp) 
call printf 
movl $0, %eax 
leave 
ret 
.size main, .-main 

...

gcc -S main.c

gcc -c main.c main.o
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2.2 Objektdatei

ELF – Executable and Linking Format

• executable

• relocatable object

• shared object

C/C++
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segment

ELF header

Program header

Section header

...

Program header

Section header

section

...

ELF header

section

Link Ansicht

Executable

Section Headers:
  [Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al
  [ 0]                   NULL            00000000 000000 000000 00      0   0  0
  [ 1] .text             PROGBITS        00000000 000034 00001d 00  AX  0   0  4
  [ 2] .rel.text         REL             00000000 000344 000010 08      9   1  4
  [ 3] .data             PROGBITS        00000000 000054 000000 00  WA  0   0  4
  [ 4] .bss              NOBITS          00000000 000054 000000 00  WA  0   0  4
  [ 5] .rodata           PROGBITS        00000000 000054 00000e 00   A  0   0  1
  [ 6] .comment          PROGBITS        00000000 000062 000024 01  MS  0   0  1
  [ 7] .note.GNU-stack   PROGBITS        00000000 000086 000000 00      0   0  1
  [ 8] .shstrtab         STRTAB          00000000 000086 000051 00      0   0  1
  [ 9] .symtab           SYMTAB          00000000 000290 0000a0 10     10   8  4
  [10] .strtab           STRTAB          00000000 000330 000014 00      0   0  1

readelf -S main.o
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2.2.1 Sektionen

Maschinencode
• .text

• symbolische Namen

• Adressen

Relokation
• .rel.text

Symboltabelle
• .symtab

• definierte Symbole

• undefinierte Symbole

C/C++
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Disassembly of section .text:
00000000 <main>:
   0:   55                      push   %ebp
   1:   89 e5                   mov    %esp,%ebp
   3:   83 e4 f0                and    $0xfffffff0,%esp
   6:   83 ec 10                sub    $0x10,%esp
   9:   b8 00 00 00 00          mov    $0x0,%eax
   e:   89 04 24                mov    %eax,(%esp)
  11:   e8 fc ff ff ff          call   12 <main+0x12>
  16:   b8 00 00 00 00          mov    $0x0,%eax
  1b:   c9                      leave  
  1c:   c3                      ret    

objdump -d main.o

Relocation section '.rel.text' at offset 0x344 contains 2 entries:
 Offset     Info    Type            Sym.Value  Sym. Name
0000000a  00000501 R_386_32          00000000   .rodata
00000012  00000902 R_386_PC32        00000000   printf

readelf -r main.o

Symbol table '.symtab' contains 10 entries:
   Num:    Value  Size Type    Bind   Vis      Ndx Name
     0: 00000000     0 NOTYPE  LOCAL  DEFAULT  UND 
     1: 00000000     0 FILE    LOCAL  DEFAULT  ABS main.c
     2: 00000000     0 SECTION LOCAL  DEFAULT    1 
     3: 00000000     0 SECTION LOCAL  DEFAULT    3 
     4: 00000000     0 SECTION LOCAL  DEFAULT    4 
     5: 00000000     0 SECTION LOCAL  DEFAULT    5 
     6: 00000000     0 SECTION LOCAL  DEFAULT    7 
     7: 00000000     0 SECTION LOCAL  DEFAULT    6 
     8: 00000000    29 FUNC    GLOBAL DEFAULT    1 main
     9: 00000000     0 NOTYPE  GLOBAL DEFAULT  UND printf

readelf -s main.o
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2.3 Programmstart und Funktionsaufrufe

LSB / SysV ABI

C/C++
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...

auxiliary ELF vector

0x0000

NULL
auxiliary ELF vector

argument pointer

argc

...

...

unspecified

data

0(%esp)

4(%esp)

environment pointer

0x0000

return address

argument word 0

argument word n

...

4(%ebp)

8(%ebp)

0(%ebp) old %ebp

n4+8(%ebp)

...

0(%ebp)

...

.text
.globl _start

.type _start, @function
_start:
        movl   %esp, %eax
        leal   4(%eax), %edx
        pushl  %edx
        pushl  %eax

   call   main
        pushl  %eax
        call  _exit

.size _start, .-_startreturn value %eax

start.s
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2.4 Systemaufrufe
C/C++
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.text
.globl _exit

.type exit, @function
_exit:

pushl %ebp
movl  %esp, %ebp
movl  8(%ebp), %ebx

        movl  $0x01, %eax
        int   $0x80

.size exit, .-exit

void put (char c)
{
  __asm__ ("movl $0x04, %%eax\n"
           "movl $0x01, %%ebx\n"
           "movl $01, %%edx\n"
           "int $0x80"
           :: "c" (&c)
           : "eax", "ebx", "edx");
}

void print (char* c)
{
  while (*(c) != '\0')
    put (*(c++));
}

/usr/include/asm/unistd_32.h
 ...
#define __NR_restart_syscall      0
#define __NR_exit                 1
#define __NR_fork                 2
#define __NR_read                 3
#define __NR_write                4
#define __NR_open                 5
#define __NR_close                6
#define __NR_waitpid              7
#define __NR_creat                8
 ...

Kennzahl%eax

%ebx

%ecx

%edx

%esi

%edi

Parameter 0

...

Parameter 1

Rückgabewert %eax

int 0x80

linux-gate.so.1

end.s

print.c



LUG Frankfurt Programmierworkshop

2.5 Linker

Beispiel Arbeitsweise

C/C++
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Linker

executable shared object

relocatable shared object

...

gcc -nostdlib main.o start.o end.o print.o -o hello

main.o start.o end.o print.o

Elf file type is EXEC (Executable file)
Entry point 0x80480d4
There are 3 program headers, starting at offset 52

Program Headers:
  Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align
  LOAD           0x000000 0x08048000 0x08048000 0x00156 0x00156 R E 0x1000
  NOTE           0x000094 0x08048094 0x08048094 0x00024 0x00024 R   0x4
  GNU_STACK      0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x4

 Section to Segment mapping:
  Segment Sections...
   00     .note.gnu.build-id .text .rodata 
   01     .note.gnu.build-id 
   02     

readelf -l hello
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2.6 statisch linken

Speicherlayout

Segmente

• R/W .data ...

• R/E .text .rodata ...

Relokation
Addressen

• Sprünge

• Daten

C/C++
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relocatable A relocatable B

executable

Maschinencode
Daten
Zusatzinformation
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2.7 in der Praxis

… ist es zum Glück viel einfacher :)

C/C++
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#include <stdio.h>

int main (int argc, char* argv[])
{
  printf ("hello world.\n");
  return 0;
}

main.c

gcc main.c a.out
$ ./a.out
hello world.
$
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2.8 GNU/Linux – Speicherverwaltung

physikalischer Speicher
• physikalische Adresse

virtueller Speicher
• virtuelle Adresse

Memory Management Unit
• Segmentierung

• Paging

Seitentabelle
• Transformation

• virtuell - physikalisch

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to 
this work. This work is published from: Germany. 

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to 
this work. This work is published from: Germany. 

physikalisch virtuell

3GB

Seitentabellen
UPPER MIDDLE TABLE OFFSET

...
...

...

GLOBAL

...
...CR3
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2.8.1 statisch - zur Ausführungszeit
C/C++
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physikalisch

relocatable object

Binary B

Binary A Prozess A

Prozess B
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2.8.2 dynamisch linken
C/C++
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2.8.3 Shared Objects
C/C++
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#include <stdio.h>

void hello_world (void)
{
  printf ("hello world.\n");
}

hello.c

int main (int argc, char* argv[])
{
  hello_world ();
  return 0;
}

main.c

$ export LD_LIBRARY_PATH=$(pwd)
$ ./hello
hello world.
$

gcc -c -fPIC hello.c

gcc -shared -Wl,-soname,libhello.so -o libhello.so

gcc -o hello -L. -lhello main.c 
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2.8.4 dynamisch – zur Ausführungszeit
C/C++
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physikalisch

shared object

Binary B

Binary A Prozess A

Prozess B

/lib/ld-linux.so
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2.9 dynamischer Linker

Cache
• /etc/ld.so.cache

• ldconfig

Environment
• LD_LIBRARY_PATH

• LD_BIND_NOW

• LD_DEBUG

• LD_PRELOAD

Details
• man ld.so

• man ldconfig

C/C++
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2.9.1 LD_PRELOAD
C/C++
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#include <stdio.h>

void hello_world (void)
{
  printf ("hello world.\n");
}

hello.c

int main (int argc, char* argv[])
{
  hello_world ();
  return 0;
}

main.c

#include <stdio.h>

void hello_world (void)
{
  printf ("my hello world.\n");
}

myhello.c

gcc -o myhello -shared myhello.c $ LD_PRELOAD=myhello ./hello
my hello world.
$
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2.9.2 dlopen

POSIX API 
• öffnen / schließen

void *dlopen (char *filename, int flag)
int dlclose (void *handle)

• Symboladresse
void *dlsym (void *handle, char *symbol)

• Fehlermeldung
char *dlerror (void)

GNU Erweiterungen
#define _GNU_SOURCE

• Information
int dladdr (void *addr, Dl_info *info)

• Version
void *dlvsym (void *handle, char *symbol, char *version) 

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to 
this work. This work is published from: Germany. 

#include <dlfcn.h>

int main(int argc, char *argv[])
{
  void *handle;
  void (*fp) (void);
    
  handle = dlopen ("libhello.so", RTLD_LAZY);

  fp = dlsym (handle, "hello_world");
  fp ();

  dlclose  (handle);

  return 0;
}

main.c
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3 Werkzeuge

verschiedene Komponenten bedienen...

Komponenten
• Präprozessor
• Compiler
• Assembler
• Linker

...und zwar möglichst nicht von Hand

Front-Ends
• GNU Compiler Collection
• GNU Make

C/C++
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3.1 GNU Compiler Collection

Compile/Link Manager

• Präprozessor
• Compiler
• Assembler
• Linker

specs
• gcc -dumpspecs

C/C++
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3.2 GNU make

Abhängigkeitsgraph Makefile

C/C++
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hello: main.o start.o end.o print.o
gcc -nostdlib main.o start.o end.o print.o -o hello

main.o: main.c print.h
gcc -c main.c

print.o: print.c
gcc -c print.c

start.o: start.s
gcc -c start.s

end.o: end.s
gcc -c end.s

clean:
rm -rf main.o start.o end.o print.o

hello

main.ostart.o end.o

start.s

print.o

print.cend.smain.cprint.h
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3.2.1 Makefile

Makros

• Variablen

• Funktionen

Regeln

• Explizite Regeln

• Musterregeln

• eingebaute Regeln

• Pseudoziele

C/C++
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C_SOURCES = main.c print.c
ASM_SOURCES = start.s end.s

OBJS = $(subst .c,.o, $(C_SOURCES))
OBJS += $(subst .s,.o, $(ASM_SOURCES))

PROGRAM = hello

$(PROGRAM): $(OBJS)
gcc -nostdlib $(OBJS) -o $(PROGRAM)

main.o: main.c print.h

clean:
rm -rf main.o start.o end.o print.o

%.o: %.c
gcc -c $<

%.o: %.s
gcc -c $<
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4 C und Varianten

Erscheinungsjahr 1972!

• seitdem zahlreiche Dialekte

einige Varianten

• K&R C
• ANSI C / C89
• (C95)
• C99

• GNU C

C/C++
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auto        default     float       long        static     unsigned
break       do          for         register    struct     while
case        double      goto        return      switch   
char        else        if          short       typedef 
continue    extern      int         sizeof      union          

const       enum        signed      void        volatile 

inline     long long    restrict    _Bool      _Complex    _Imaginary
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4.1 K&R C

Deklaration von Funktionen

• ohne Parameter

Blockkommentar

Deklaration von Funktionsparametern

• separat vor der öffnenden Klammer
• nicht deklarierte Paramter (= int)

Deklaration von Variablen

• nur am Anfang eines Blocks

C/C++
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power ();

/* don't use with n negative!
   ... 
*/

power (b, n)
int b;

  int result;
  int i;

{

  result = 1;
  for (i=0; i<n; ++i)
    result *= b;
  return result;
}
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4.2 ANSI C

Deklaration von Funktionen

• mit Typangabe

Blockkommentar

Deklaration von Funktionsparametern

• direkt vor Ort

Deklaration von Variablen

• nur am Anfang eines Blocks

C/C++
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/* don't use with n negative!
   ... 
*/

  int result;
  int i;

{

  result = 1;
  for (i=0; i<n; ++i)
    result *= b;
  return result;
}

int power (int b, int n)

int power (int, int);
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4.3 C99

Deklaration von Funktionen

• unverändert

Kommentarzeilen

• zusätzlich erlaubt

Deklaration von Funktionsparametern

• unverändert

Deklaration von Variablen

• muss nicht am Anfang eines Blocks erfolgen

C/C++
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int power (int b, int n)

int power (int, int);

// don't use with n negative!
// ... 

{
  int result;
  result = 1;

  for (int i=0; i<n; ++i)
    result *= b;
  return result;
}
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5 Bibliotheken und Header

Typinformation
• zur Übersetzungszeit

C/C++
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return address

argument word 0

argument word n

...

4(%ebp)

8(%ebp)

0(%ebp) old %ebp

n4+8(%ebp)

...

0(%ebp)

...

return value %eax

float add (float a, float b)
{
  return a + b;
}

#include <stdio.h>

int main(int argc, char *argv[])
{
  printf ("%d + %d = %d\n", 1, 2, add (1, 2));
  return 0;
}

$ ./a.out
1 + 2 = -1081551932
$
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5.1 …wie machen das die anderen?

Typinformation
• zur Laufzeit

Beispiel: Python

C/C++
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...
typedef struct {
    PyObject_HEAD
    long ob_ival;
} PyIntObject;

...
#define PyObject_HEAD \

_PyObject_HEAD_EXTRA \
Py_ssize_t ob_refcnt; \
struct _typeobject *ob_type;

...
#define _PyObject_HEAD_EXTRA
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5.2 C Standard Library

von unverzichtbar ...
• <stdio.h>

• Ein-/Ausgabe, öffnen / schließen von Dateien
• <errno.h>

• Fehlerbehandlung
<stdlib.h>
• Speicherverwaltung

• <string.h>
• Zeichenketten aber auch! memmove

… bis exotisch
• <stdarg.h>

• variable Argumentenlisten
• <setjmp.h>

• nicht lokale Sprünge

C/C++
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5.3 POSIX

I/O

Prozessverwaltung

IPC

Regular Expressions
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6 Speicherverwaltung

statischer Speicher
• statische / globale variablen

• feste Zuweisung im Adressraum

automatischer Speicher
• automatische Variablen

• auf dem Stack

dynamischer Speicher
• malloc () / realloc ()

• free ()

• alloca ()

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to 
this work. This work is published from: Germany. 

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to 
this work. This work is published from: Germany. 



LUG Frankfurt Programmierworkshop

6.1.1 Vorsicht, Falle!
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typedef struct _stack_item {
  struct _stack_item *prev;
  void *data;
} StackItem;

typedef struct _stack {
  StackItem* top;
} Stack;

void push (Stack *stack, void *data)
{
  StackItem item;
  item.prev = stack->top;
  item.data = data;
  stack->top = &item;
}

void* pop (Stack *stack)
{
  void *data = NULL;
  StackItem *top = stack->top;
  
  if (stack->top)
    {
      data = stack->top->data;
      stack->top = stack->top->prev;
      free (top);
    }
  return data;
}

#include <stdio.h>
#include <stdlib.h>

...

int main(int argc, char *argv[])
{
  Stack S = { NULL };
  char *string;

  push (&S, "first item");
  push (&S, "second item");
  push (&S, "third item");

    while ((string = pop (&S)) != NULL)
      printf ("%s\n", string);

  return 0;
}

TOP

PUSHPOP
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6.2 …schlimmer …geht’s immer!
C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to 
this work. This work is published from: Germany. 

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to 
this work. This work is published from: Germany. 

#include <stdio.h>
#include <stdlib.h>

...

int main(int argc, char *argv[])
{
  Queue Q = { NULL, NULL };
  char *string;

  while (1)
    {
      enqueue (&Q, "first item");
      string = dequeue (&Q);
    }

  return 0;
}

typedef struct _queue_item{
  struct _queue_item *prev;
  void *data;
} QueueItem;

typedef struct {
  QueueItem *left;
  QueueItem *right;
} Queue;

void enqueue (Queue *queue, void* data)
{
  QueueItem *item = malloc (sizeof (QueueItem));
  item->data = data;
  item->prev = NULL;
  if (queue->right)
    queue->right->prev = item;
  else
    queue->left = item;
  queue->right = item;
}

void* dequeue (Queue *queue)
{
  void *data = NULL;
  if (queue->left)
    {
      data = queue->left->data;
      queue->left = queue->left->prev;
      if (!queue->left)
        queue->right = NULL;
    }
  return data;
}

LEFT RIGHT

DEQUEUE ENQUEUE
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7 POSIX – Regular Expressions

POSIX
• BRE (= Basic Regular Expressions)

• \( \)  \{m,n\}

• ERE (= Enhanced Regular Expressions)

• ( )  {m,n} + ? |

• gemeinsam

• .  *  ^ $  []

nicht verwechseln mit
• Wildcard-Matching

• fnmatch()

• Globbing

• glob(), globfree()

C/C++
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7.1 Reguläre Ausdrücke

Datentyp
regex_t

     .re_nsub # Sub-Expressions  (von regcomp() ausgefüllt)

Funktionen
• Erzeugen (= „Übersetzen“)

• regcomp (regex_t *preg, const char *regex, int cflags)

• Freigeben
• regfree (regex_t *preg)

Flags
• REG_EXTENDED, REG_NOSUB, …

• Details
• man regcomp
• info libc

C/C++
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7.2 Treffer

Datentyp
regmatch_t

     .rm_so Start-Offset  ( -1 für keinen Treffer)

     .rm_eo End-Offset

Funtionen
• „Match“

• regexec (regex_t *preg, const char *string, size_t nmatch, 
                regmatch_t pmatch[], int eflags)

• Treffer 0 – kompletter Ausdruck

• Treffer i – i-te sub-expression

Flags
• siehe manual-pages / libc info Seiten

C/C++
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7.3 Beispiel
C/C++
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$ ./match "(\w*a\w*)(n\w*)" <<EOF
> Bei Banane und Ananas
> kann man Treffer finden.
> EOF
Treffer in Zeile 0: "Banane" "Bana" "ne"
Treffer in Zeile 0: "Ananas" "Ana" "nas"
Treffer in Zeile 1: "kann" "kan" "n"
Treffer in Zeile 1: "man" "ma" "n"
$ 

int main(int argc, char *argv[])
{
  int line = 0;
  char *string = NULL;
  int length = 0;
  int n;
  regex_t regex;
  regmatch_t *match;

  if (argc != 2)
    exit (EXIT_FAILURE);

  regcomp (&regex, argv[1], REG_EXTENDED);
  n = regex.re_nsub + 1;
 
 match = malloc (n * sizeof (regmatch_t));
  
  while (getline (&string, &length, stdin) != -1)
    {
      char *pos = string;
      while (!regexec (&regex, pos, n, match, 0))
        {
          int i;
          printf ("Treffer in Zeile %d:", line);
          for (i=0; i < n; ++i)
            print_match (pos, match[i]);
          printf ("\n");
          pos += match[0].rm_eo;
        }
      free (string); string = NULL; length = 0;
      ++line;
    }
  free (match); regfree (&regex); return 0;
}

#include <stdio.h>
#include <sys/types.h>
#include <regex.h>
#include <stdlib.h>

void print_match (char *string, regmatch_t match)
{
  printf (" \"%.*s\"", match.rm_eo - match.rm_so,
          string + match.rm_so);
}
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8 Fragen …
C/C++
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