
LUG Frankfurt Programmierworkshop

1 Programmierung

Ein erstes Programm

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

 0:
 2:
 4:
 6:
 8:
 a:
 c:
 e:
10:
12:
14:
16:

 df 93
 cf 93
 00 d0
 00 d0
 cd b7
 de b7
 9a 83
 89 83
 7C 83
 6b 83
 29 81
 3a 81

18:
1a:
1c:
1e:
20:
22:
24:
26:
28:
2a:
2c:

 8b 81
 9c 81
 82 0f
 93 1f
 0f 90
 0f 90
 0f 90
 0f 90
 cf 91
 df 91
 08 95

LUG Frankfurt Programmierworkshop

1.1 Arbeitsweise eines Computers

Befehlssatz
• einfache Befehle

• RISC

• CISC

Von-Neumann-Zyklus
1. FETCH

2. DECODE

3. FETCH OPERANDS

4. EXECUTE

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

CPU

RAM I/O

LOAD
STORE

GOTO
IF … GOTO

ADD
SUB
DIV
MUL

LUG Frankfurt Programmierworkshop

1.2 Motivation

Problem

• Programm in Maschinencode

• Codierung

• unterschiedliche Befehlssätze

Lösungsansätze

• Assemblersprachen

• höhere Programmiersprachen

• Interpreter

• Compiler

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

LUG Frankfurt Programmierworkshop

1.3 Interpreter

Beispiele
• bash

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

übersetzen
Quellcode

ausführen

Maschinencode

Maschinencode

Vorverarbeitung Ausführung

eingeben
Quellcode Maschinencode

LUG Frankfurt Programmierworkshop

1.4 Compiler

Beispiele
• GNU Compiler Collection

• C / C++
• Fortran

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

übersetzen
Quellcode

ausführen

Maschinencode

Vorverarbeitung Ausführung

eingeben
Quellcode Maschinencode

LUG Frankfurt Programmierworkshop

1.5 Hybridcompiler

Beispiele
• Perl

• Java

• Python

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

übersetzen

übersetzen
Bytecode

ausführen

Maschinencode

Maschinencode

Vorverarbeitung Ausführung

übersetzen

eingeben
Quellcode

MaschinencodeQuellcode Bytecode

Quellcode Bytecode

LUG Frankfurt Programmierworkshop

2 Compiler / Linker

 Bearbeitungsschritte

• Quellcode

Präprozessor

• modifizierter Quellcode

Compiler

• Assemblercode

Assembler

• verschiebbarer Maschinencode

Linker

• Prozessabbild

• Shared Object

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

LUG Frankfurt Programmierworkshop

2.1 von der Quelle zur Objektdatei

Beispiel

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

#include <stdio.h>

int main (int argc, char* argv[])
{
 printf ("hello world.\n");
 return 0;
}

main.c

...

extern int printf (__const char *__restrict __format, ...);
...

int main (int argc, char* argv[])
{
 printf ("hello world.\n");
 return 0;
}

gcc -E main.c

.file "main.c"

.section .rodata
.LC0:

.string "hello world.\n"

.text
.globl main

.type main, @function
main:

pushl %ebp
movl %esp, %ebp
andl $-16, %esp
subl $16, %esp
movl $.LC0, %eax
movl %eax, (%esp)
call printf
movl $0, %eax
leave
ret
.size main, .-main

...

gcc -S main.c

gcc -c main.c main.o

LUG Frankfurt Programmierworkshop

2.2 Objektdatei

ELF – Executable and Linking Format

• executable

• relocatable object

• shared object

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

segment

ELF header

Program header

Section header

...

Program header

Section header

section

...

ELF header

section

Link Ansicht

Executable

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al
 [0] NULL 00000000 000000 000000 00 0 0 0
 [1] .text PROGBITS 00000000 000034 00001d 00 AX 0 0 4
 [2] .rel.text REL 00000000 000344 000010 08 9 1 4
 [3] .data PROGBITS 00000000 000054 000000 00 WA 0 0 4
 [4] .bss NOBITS 00000000 000054 000000 00 WA 0 0 4
 [5] .rodata PROGBITS 00000000 000054 00000e 00 A 0 0 1
 [6] .comment PROGBITS 00000000 000062 000024 01 MS 0 0 1
 [7] .note.GNU-stack PROGBITS 00000000 000086 000000 00 0 0 1
 [8] .shstrtab STRTAB 00000000 000086 000051 00 0 0 1
 [9] .symtab SYMTAB 00000000 000290 0000a0 10 10 8 4
 [10] .strtab STRTAB 00000000 000330 000014 00 0 0 1

readelf -S main.o

LUG Frankfurt Programmierworkshop

2.2.1 Sektionen

Maschinencode
• .text

• symbolische Namen

• Adressen

Relokation
• .rel.text

Symboltabelle
• .symtab

• definierte Symbole

• undefinierte Symbole

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

Disassembly of section .text:
00000000 <main>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 83 e4 f0 and $0xfffffff0,%esp
 6: 83 ec 10 sub $0x10,%esp
 9: b8 00 00 00 00 mov $0x0,%eax
 e: 89 04 24 mov %eax,(%esp)
 11: e8 fc ff ff ff call 12 <main+0x12>
 16: b8 00 00 00 00 mov $0x0,%eax
 1b: c9 leave
 1c: c3 ret

objdump -d main.o

Relocation section '.rel.text' at offset 0x344 contains 2 entries:
 Offset Info Type Sym.Value Sym. Name
0000000a 00000501 R_386_32 00000000 .rodata
00000012 00000902 R_386_PC32 00000000 printf

readelf -r main.o

Symbol table '.symtab' contains 10 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 00000000 0 NOTYPE LOCAL DEFAULT UND
 1: 00000000 0 FILE LOCAL DEFAULT ABS main.c
 2: 00000000 0 SECTION LOCAL DEFAULT 1
 3: 00000000 0 SECTION LOCAL DEFAULT 3
 4: 00000000 0 SECTION LOCAL DEFAULT 4
 5: 00000000 0 SECTION LOCAL DEFAULT 5
 6: 00000000 0 SECTION LOCAL DEFAULT 7
 7: 00000000 0 SECTION LOCAL DEFAULT 6
 8: 00000000 29 FUNC GLOBAL DEFAULT 1 main
 9: 00000000 0 NOTYPE GLOBAL DEFAULT UND printf

readelf -s main.o

LUG Frankfurt Programmierworkshop

2.3 Programmstart und Funktionsaufrufe

LSB / SysV ABI

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

...

auxiliary ELF vector

0x0000

NULL
auxiliary ELF vector

argument pointer

argc

...

...

unspecified

data

0(%esp)

4(%esp)

environment pointer

0x0000

return address

argument word 0

argument word n

...

4(%ebp)

8(%ebp)

0(%ebp) old %ebp

n4+8(%ebp)

...

0(%ebp)

...

.text
.globl _start

.type _start, @function
_start:
 movl %esp, %eax
 leal 4(%eax), %edx
 pushl %edx
 pushl %eax

 call main
 pushl %eax
 call _exit

.size _start, .-_startreturn value %eax

start.s

LUG Frankfurt Programmierworkshop

2.4 Systemaufrufe
C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

.text
.globl _exit

.type exit, @function
_exit:

pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %ebx

 movl $0x01, %eax
 int $0x80

.size exit, .-exit

void put (char c)
{
 __asm__ ("movl $0x04, %%eax\n"
 "movl $0x01, %%ebx\n"
 "movl $01, %%edx\n"
 "int $0x80"
 :: "c" (&c)
 : "eax", "ebx", "edx");
}

void print (char* c)
{
 while (*(c) != '\0')
 put (*(c++));
}

/usr/include/asm/unistd_32.h
 ...
#define __NR_restart_syscall 0
#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5
#define __NR_close 6
#define __NR_waitpid 7
#define __NR_creat 8
 ...

Kennzahl%eax

%ebx

%ecx

%edx

%esi

%edi

Parameter 0

...

Parameter 1

Rückgabewert %eax

int 0x80

linux-gate.so.1

end.s

print.c

LUG Frankfurt Programmierworkshop

2.5 Linker

Beispiel Arbeitsweise

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

Linker

executable shared object

relocatable shared object

...

gcc -nostdlib main.o start.o end.o print.o -o hello

main.o start.o end.o print.o

Elf file type is EXEC (Executable file)
Entry point 0x80480d4
There are 3 program headers, starting at offset 52

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 LOAD 0x000000 0x08048000 0x08048000 0x00156 0x00156 R E 0x1000
 NOTE 0x000094 0x08048094 0x08048094 0x00024 0x00024 R 0x4
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x4

 Section to Segment mapping:
 Segment Sections...
 00 .note.gnu.build-id .text .rodata
 01 .note.gnu.build-id
 02

readelf -l hello

LUG Frankfurt Programmierworkshop

2.6 statisch linken

Speicherlayout

Segmente

• R/W .data ...

• R/E .text .rodata ...

Relokation
Addressen

• Sprünge

• Daten

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

relocatable A relocatable B

executable

Maschinencode
Daten
Zusatzinformation

LUG Frankfurt Programmierworkshop

2.7 in der Praxis

… ist es zum Glück viel einfacher :)

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

#include <stdio.h>

int main (int argc, char* argv[])
{
 printf ("hello world.\n");
 return 0;
}

main.c

gcc main.c a.out
$./a.out
hello world.
$

LUG Frankfurt Programmierworkshop

2.8 GNU/Linux – Speicherverwaltung

physikalischer Speicher
• physikalische Adresse

virtueller Speicher
• virtuelle Adresse

Memory Management Unit
• Segmentierung

• Paging

Seitentabelle
• Transformation

• virtuell - physikalisch

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

physikalisch virtuell

3GB

Seitentabellen
UPPER MIDDLE TABLE OFFSET

...
...

...

GLOBAL

...
...CR3

LUG Frankfurt Programmierworkshop

2.8.1 statisch - zur Ausführungszeit
C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

physikalisch

relocatable object

Binary B

Binary A Prozess A

Prozess B

LUG Frankfurt Programmierworkshop

2.8.2 dynamisch linken
C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

relocatable
shared object

executable

LUG Frankfurt Programmierworkshop

2.8.3 Shared Objects
C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

#include <stdio.h>

void hello_world (void)
{
 printf ("hello world.\n");
}

hello.c

int main (int argc, char* argv[])
{
 hello_world ();
 return 0;
}

main.c

$ export LD_LIBRARY_PATH=$(pwd)
$./hello
hello world.
$

gcc -c -fPIC hello.c

gcc -shared -Wl,-soname,libhello.so -o libhello.so

gcc -o hello -L. -lhello main.c

LUG Frankfurt Programmierworkshop

2.8.4 dynamisch – zur Ausführungszeit
C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

physikalisch

shared object

Binary B

Binary A Prozess A

Prozess B

/lib/ld-linux.so

LUG Frankfurt Programmierworkshop

2.9 dynamischer Linker

Cache
• /etc/ld.so.cache

• ldconfig

Environment
• LD_LIBRARY_PATH

• LD_BIND_NOW

• LD_DEBUG

• LD_PRELOAD

Details
• man ld.so

• man ldconfig

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

LUG Frankfurt Programmierworkshop

2.9.1 LD_PRELOAD
C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

#include <stdio.h>

void hello_world (void)
{
 printf ("hello world.\n");
}

hello.c

int main (int argc, char* argv[])
{
 hello_world ();
 return 0;
}

main.c

#include <stdio.h>

void hello_world (void)
{
 printf ("my hello world.\n");
}

myhello.c

gcc -o myhello -shared myhello.c $ LD_PRELOAD=myhello ./hello
my hello world.
$

LUG Frankfurt Programmierworkshop

2.9.2 dlopen

POSIX API
• öffnen / schließen

void *dlopen (char *filename, int flag)
int dlclose (void *handle)

• Symboladresse
void *dlsym (void *handle, char *symbol)

• Fehlermeldung
char *dlerror (void)

GNU Erweiterungen
#define _GNU_SOURCE

• Information
int dladdr (void *addr, Dl_info *info)

• Version
void *dlvsym (void *handle, char *symbol, char *version)

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

#include <dlfcn.h>

int main(int argc, char *argv[])
{
 void *handle;
 void (*fp) (void);

 handle = dlopen ("libhello.so", RTLD_LAZY);

 fp = dlsym (handle, "hello_world");
 fp ();

 dlclose (handle);

 return 0;
}

main.c

LUG Frankfurt Programmierworkshop

3 Werkzeuge

verschiedene Komponenten bedienen...

Komponenten
• Präprozessor
• Compiler
• Assembler
• Linker

...und zwar möglichst nicht von Hand

Front-Ends
• GNU Compiler Collection
• GNU Make

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

LUG Frankfurt Programmierworkshop

3.1 GNU Compiler Collection

Compile/Link Manager

• Präprozessor
• Compiler
• Assembler
• Linker

specs
• gcc -dumpspecs

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

LUG Frankfurt Programmierworkshop

3.2 GNU make

Abhängigkeitsgraph Makefile

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

hello: main.o start.o end.o print.o
gcc -nostdlib main.o start.o end.o print.o -o hello

main.o: main.c print.h
gcc -c main.c

print.o: print.c
gcc -c print.c

start.o: start.s
gcc -c start.s

end.o: end.s
gcc -c end.s

clean:
rm -rf main.o start.o end.o print.o

hello

main.ostart.o end.o

start.s

print.o

print.cend.smain.cprint.h

LUG Frankfurt Programmierworkshop

3.2.1 Makefile

Makros

• Variablen

• Funktionen

Regeln

• Explizite Regeln

• Musterregeln

• eingebaute Regeln

• Pseudoziele

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

C_SOURCES = main.c print.c
ASM_SOURCES = start.s end.s

OBJS = $(subst .c,.o, $(C_SOURCES))
OBJS += $(subst .s,.o, $(ASM_SOURCES))

PROGRAM = hello

$(PROGRAM): $(OBJS)
gcc -nostdlib $(OBJS) -o $(PROGRAM)

main.o: main.c print.h

clean:
rm -rf main.o start.o end.o print.o

%.o: %.c
gcc -c $<

%.o: %.s
gcc -c $<

LUG Frankfurt Programmierworkshop

4 C und Varianten

Erscheinungsjahr 1972!

• seitdem zahlreiche Dialekte

einige Varianten

• K&R C
• ANSI C / C89
• (C95)
• C99

• GNU C

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

auto default float long static unsigned
break do for register struct while
case double goto return switch
char else if short typedef
continue extern int sizeof union

const enum signed void volatile

inline long long restrict _Bool _Complex _Imaginary

LUG Frankfurt Programmierworkshop

4.1 K&R C

Deklaration von Funktionen

• ohne Parameter

Blockkommentar

Deklaration von Funktionsparametern

• separat vor der öffnenden Klammer
• nicht deklarierte Paramter (= int)

Deklaration von Variablen

• nur am Anfang eines Blocks

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

power ();

/* don't use with n negative!
 ...
*/

power (b, n)
int b;

 int result;
 int i;

{

 result = 1;
 for (i=0; i<n; ++i)
 result *= b;
 return result;
}

LUG Frankfurt Programmierworkshop

4.2 ANSI C

Deklaration von Funktionen

• mit Typangabe

Blockkommentar

Deklaration von Funktionsparametern

• direkt vor Ort

Deklaration von Variablen

• nur am Anfang eines Blocks

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

/* don't use with n negative!
 ...
*/

 int result;
 int i;

{

 result = 1;
 for (i=0; i<n; ++i)
 result *= b;
 return result;
}

int power (int b, int n)

int power (int, int);

LUG Frankfurt Programmierworkshop

4.3 C99

Deklaration von Funktionen

• unverändert

Kommentarzeilen

• zusätzlich erlaubt

Deklaration von Funktionsparametern

• unverändert

Deklaration von Variablen

• muss nicht am Anfang eines Blocks erfolgen

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

int power (int b, int n)

int power (int, int);

// don't use with n negative!
// ...

{
 int result;
 result = 1;

 for (int i=0; i<n; ++i)
 result *= b;
 return result;
}

LUG Frankfurt Programmierworkshop

5 Bibliotheken und Header

Typinformation
• zur Übersetzungszeit

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

return address

argument word 0

argument word n

...

4(%ebp)

8(%ebp)

0(%ebp) old %ebp

n4+8(%ebp)

...

0(%ebp)

...

return value %eax

float add (float a, float b)
{
 return a + b;
}

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf ("%d + %d = %d\n", 1, 2, add (1, 2));
 return 0;
}

$./a.out
1 + 2 = -1081551932
$

LUG Frankfurt Programmierworkshop

5.1 …wie machen das die anderen?

Typinformation
• zur Laufzeit

Beispiel: Python

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

...
typedef struct {
 PyObject_HEAD
 long ob_ival;
} PyIntObject;

...
#define PyObject_HEAD \

_PyObject_HEAD_EXTRA \
Py_ssize_t ob_refcnt; \
struct _typeobject *ob_type;

...
#define _PyObject_HEAD_EXTRA

LUG Frankfurt Programmierworkshop

5.2 C Standard Library

von unverzichtbar ...
• <stdio.h>

• Ein-/Ausgabe, öffnen / schließen von Dateien
• <errno.h>

• Fehlerbehandlung
<stdlib.h>
• Speicherverwaltung

• <string.h>
• Zeichenketten aber auch! memmove

… bis exotisch
• <stdarg.h>

• variable Argumentenlisten
• <setjmp.h>

• nicht lokale Sprünge

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

LUG Frankfurt Programmierworkshop

5.3 POSIX

I/O

Prozessverwaltung

IPC

Regular Expressions

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

LUG Frankfurt Programmierworkshop

6 Speicherverwaltung

statischer Speicher
• statische / globale variablen

• feste Zuweisung im Adressraum

automatischer Speicher
• automatische Variablen

• auf dem Stack

dynamischer Speicher
• malloc () / realloc ()

• free ()

• alloca ()

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

LUG Frankfurt Programmierworkshop

6.1.1 Vorsicht, Falle!
C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

typedef struct _stack_item {
 struct _stack_item *prev;
 void *data;
} StackItem;

typedef struct _stack {
 StackItem* top;
} Stack;

void push (Stack *stack, void *data)
{
 StackItem item;
 item.prev = stack->top;
 item.data = data;
 stack->top = &item;
}

void* pop (Stack *stack)
{
 void *data = NULL;
 StackItem *top = stack->top;

 if (stack->top)
 {
 data = stack->top->data;
 stack->top = stack->top->prev;
 free (top);
 }
 return data;
}

#include <stdio.h>
#include <stdlib.h>

...

int main(int argc, char *argv[])
{
 Stack S = { NULL };
 char *string;

 push (&S, "first item");
 push (&S, "second item");
 push (&S, "third item");

 while ((string = pop (&S)) != NULL)
 printf ("%s\n", string);

 return 0;
}

TOP

PUSHPOP

LUG Frankfurt Programmierworkshop

6.2 …schlimmer …geht’s immer!
C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

#include <stdio.h>
#include <stdlib.h>

...

int main(int argc, char *argv[])
{
 Queue Q = { NULL, NULL };
 char *string;

 while (1)
 {
 enqueue (&Q, "first item");
 string = dequeue (&Q);
 }

 return 0;
}

typedef struct _queue_item{
 struct _queue_item *prev;
 void *data;
} QueueItem;

typedef struct {
 QueueItem *left;
 QueueItem *right;
} Queue;

void enqueue (Queue *queue, void* data)
{
 QueueItem *item = malloc (sizeof (QueueItem));
 item->data = data;
 item->prev = NULL;
 if (queue->right)
 queue->right->prev = item;
 else
 queue->left = item;
 queue->right = item;
}

void* dequeue (Queue *queue)
{
 void *data = NULL;
 if (queue->left)
 {
 data = queue->left->data;
 queue->left = queue->left->prev;
 if (!queue->left)
 queue->right = NULL;
 }
 return data;
}

LEFT RIGHT

DEQUEUE ENQUEUE

LUG Frankfurt Programmierworkshop

7 POSIX – Regular Expressions

POSIX
• BRE (= Basic Regular Expressions)

• \(\) \{m,n\}

• ERE (= Enhanced Regular Expressions)

• () {m,n} + ? |

• gemeinsam

• . * ^ $ []

nicht verwechseln mit
• Wildcard-Matching

• fnmatch()

• Globbing

• glob(), globfree()

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

LUG Frankfurt Programmierworkshop

7.1 Reguläre Ausdrücke

Datentyp
regex_t

 .re_nsub # Sub-Expressions (von regcomp() ausgefüllt)

Funktionen
• Erzeugen (= „Übersetzen“)

• regcomp (regex_t *preg, const char *regex, int cflags)

• Freigeben
• regfree (regex_t *preg)

Flags
• REG_EXTENDED, REG_NOSUB, …

• Details
• man regcomp
• info libc

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

LUG Frankfurt Programmierworkshop

7.2 Treffer

Datentyp
regmatch_t

 .rm_so Start-Offset (-1 für keinen Treffer)

 .rm_eo End-Offset

Funtionen
• „Match“

• regexec (regex_t *preg, const char *string, size_t nmatch,
 regmatch_t pmatch[], int eflags)

• Treffer 0 – kompletter Ausdruck

• Treffer i – i-te sub-expression

Flags
• siehe manual-pages / libc info Seiten

C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

LUG Frankfurt Programmierworkshop

7.3 Beispiel
C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

$./match "(\w*a\w*)(n\w*)" <<EOF
> Bei Banane und Ananas
> kann man Treffer finden.
> EOF
Treffer in Zeile 0: "Banane" "Bana" "ne"
Treffer in Zeile 0: "Ananas" "Ana" "nas"
Treffer in Zeile 1: "kann" "kan" "n"
Treffer in Zeile 1: "man" "ma" "n"
$

int main(int argc, char *argv[])
{
 int line = 0;
 char *string = NULL;
 int length = 0;
 int n;
 regex_t regex;
 regmatch_t *match;

 if (argc != 2)
 exit (EXIT_FAILURE);

 regcomp (®ex, argv[1], REG_EXTENDED);
 n = regex.re_nsub + 1;

 match = malloc (n * sizeof (regmatch_t));

 while (getline (&string, &length, stdin) != -1)
 {
 char *pos = string;
 while (!regexec (®ex, pos, n, match, 0))
 {
 int i;
 printf ("Treffer in Zeile %d:", line);
 for (i=0; i < n; ++i)
 print_match (pos, match[i]);
 printf ("\n");
 pos += match[0].rm_eo;
 }
 free (string); string = NULL; length = 0;
 ++line;
 }
 free (match); regfree (®ex); return 0;
}

#include <stdio.h>
#include <sys/types.h>
#include <regex.h>
#include <stdlib.h>

void print_match (char *string, regmatch_t match)
{
 printf (" \"%.*s\"", match.rm_eo - match.rm_so,
 string + match.rm_so);
}

LUG Frankfurt Programmierworkshop

8 Fragen …
C/C++

To the extent possible under law, the person who associated CC0 with this work has waived all copyright and related or neighboring rights to
this work. This work is published from: Germany.

	1 Programmierung
	Ein erstes Programm
	1.1 Arbeitsweise eines Computers
	Befehlssatz
	Von-Neumann-Zyklus

	1.2 Motivation
	Problem
	Lösungsansätze

	1.3 Interpreter
	Beispiele

	1.4 Compiler
	Beispiele

	1.5 Hybridcompiler
	Beispiele

	2 Compiler / Linker
	 Bearbeitungsschritte
	Präprozessor
	Compiler
	Assembler
	Linker

	2.1 von der Quelle zur Objektdatei
	Beispiel

	2.2 Objektdatei
	ELF – Executable and Linking Format
	2.2.1 Sektionen
	Maschinencode
	Relokation
	Symboltabelle

	2.3 Programmstart und Funktionsaufrufe
	LSB / SysV ABI

	2.4 Systemaufrufe
	2.5 Linker
	Beispiel
	Arbeitsweise

	2.6 statisch linken
	Speicherlayout
	Relokation

	2.7 in der Praxis
	… ist es zum Glück viel einfacher :)

	2.8 GNU/Linux – Speicherverwaltung
	physikalischer Speicher
	virtueller Speicher
	Memory Management Unit
	Seitentabelle
	2.8.1 statisch - zur Ausführungszeit
	2.8.2 dynamisch linken
	2.8.3 Shared Objects
	2.8.4 dynamisch – zur Ausführungszeit

	2.9 dynamischer Linker
	Cache
	Environment
	Details
	2.9.1 LD_PRELOAD
	2.9.2 dlopen
	POSIX API
	GNU Erweiterungen

	3 Werkzeuge
	Komponenten
	Front-Ends
	3.1 GNU Compiler Collection
	Compile/Link Manager
	specs

	3.2 GNU make
	Abhängigkeitsgraph
	Makefile
	3.2.1 Makefile
	Makros
	Regeln

	4 C und Varianten
	Erscheinungsjahr 1972!
	einige Varianten
	4.1 K&R C
	Deklaration von Funktionen
	Blockkommentar
	Deklaration von Funktionsparametern
	Deklaration von Variablen

	4.2 ANSI C
	Deklaration von Funktionen
	Blockkommentar
	Deklaration von Funktionsparametern
	Deklaration von Variablen

	4.3 C99
	Deklaration von Funktionen
	Kommentarzeilen
	Deklaration von Funktionsparametern
	Deklaration von Variablen

	5 Bibliotheken und Header
	Typinformation
	5.1 …wie machen das die anderen?
	Typinformation
	Beispiel: Python

	5.2 C Standard Library
	von unverzichtbar ...
	… bis exotisch

	5.3 POSIX
	I/O
	Prozessverwaltung
	IPC
	Regular Expressions

	6 Speicherverwaltung
	statischer Speicher
	automatischer Speicher
	dynamischer Speicher
	6.1.1 Vorsicht, Falle!
	6.2 …schlimmer …geht’s immer!

	7 POSIX – Regular Expressions
	POSIX
	nicht verwechseln mit
	7.1 Reguläre Ausdrücke
	Datentyp
	Funktionen
	Flags

	7.2 Treffer
	Datentyp
	Funtionen
	Flags

	7.3 Beispiel

	8 Fragen …

